Eigen的基础使用-C++

 2023-09-05 阅读 447 评论 0

摘要:为什么80%的码农都做不了架构师?>>> #Eigen的安装 下载Eigen以后直接引用头文件即可,需要的头文件如下 Eigen支持的编译器类型 GCC, version 4.4 and newer. MSVC (Visual Studio), 2010 and newer. (the old 3.1 version of Eigen supports MSVC 2008). In

为什么80%的码农都做不了架构师?>>>   hot3.png

#Eigen的安装

下载Eigen以后直接引用头文件即可,需要的头文件如下 输入图片说明

Eigen支持的编译器类型

GCC, version 4.4 and newer.
MSVC (Visual Studio), 2010 and newer. (the old 3.1 version of Eigen supports MSVC 2008).
Intel C++ compiler. Enabling the -inline-forceinline option is highly recommended.
LLVM/CLang++, version 3.4 and newer. (The 2.8 version used to work fine, but it is not tested with up-to-date versions of Eigen)
XCode 4 and newer. Based on LLVM/CLang.
MinGW, recent versions. Based on GCC.
QNX's QCC compiler.

接下来把文件解压,将解压后的文件放到你的工程项目目录下
填写cmake

cmake_minimum_required( VERSION 2.8 )
project( useEigen )set( CMAKE_BUILD_TYPE "Release" )
set( CMAKE_CXX_FLAGS "-O3" )# 添加Eigen头文件
include_directories( "/usr/include/eigen3" )# in osx and brew install
# include_directories( /usr/local/Cellar/eigen/3.3.3/include/eigen3 )add_executable( eigenMatrix eigenMatrix.cpp )

VS下的配置
输入图片说明

接下来测试代码:

#include <iostream>
using namespace std;
#include <ctime>
// Eigen 部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>#define MATRIX_SIZE 50/****************************
* 本程序演示了 Eigen 基本类型的使用
****************************/int main( int argc, char** argv )
{// Eigen 中所有向量和矩阵都是Eigen::Matrix,它是一个模板类。它的前三个参数为:数据类型,行,列// 声明一个2*3的float矩阵Eigen::Matrix<float, 2, 3> matrix_23;// 同时,Eigen 通过 typedef 提供了许多内置类型,不过底层仍是Eigen::Matrix// 例如 Vector3d 实质上是 Eigen::Matrix<double, 3, 1>,即三维向量Eigen::Vector3d v_3d;// 这是一样的Eigen::Matrix<float,3,1> vd_3d;// Matrix3d 实质上是 Eigen::Matrix<double, 3, 3>Eigen::Matrix3d matrix_33 = Eigen::Matrix3d::Zero(); //初始化为零// 如果不确定矩阵大小,可以使用动态大小的矩阵Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic > matrix_dynamic;// 更简单的Eigen::MatrixXd matrix_x;// 这种类型还有很多,我们不一一列举// 下面是对Eigen阵的操作// 输入数据(初始化)matrix_23 << 1, 2, 3, 4, 5, 6;// 输出cout << matrix_23 << endl;// 用()访问矩阵中的元素for (int i=0; i<2; i++) {for (int j=0; j<3; j++)cout<<matrix_23(i,j)<<"\t";cout<<endl;}// 矩阵和向量相乘(实际上仍是矩阵和矩阵)v_3d << 3, 2, 1;vd_3d << 4,5,6;// 但是在Eigen里你不能混合两种不同类型的矩阵,像这样是错的// Eigen::Matrix<double, 2, 1> result_wrong_type = matrix_23 * v_3d;// 应该显式转换Eigen::Matrix<double, 2, 1> result = matrix_23.cast<double>() * v_3d;cout << result << endl;Eigen::Matrix<float, 2, 1> result2 = matrix_23 * vd_3d;cout << result2 << endl;// 同样你不能搞错矩阵的维度// 试着取消下面的注释,看看Eigen会报什么错// Eigen::Matrix<double, 2, 3> result_wrong_dimension = matrix_23.cast<double>() * v_3d;// 一些矩阵运算// 四则运算就不演示了,直接用+-*/即可。matrix_33 = Eigen::Matrix3d::Random();      // 随机数矩阵cout << matrix_33 << endl << endl;cout << matrix_33.transpose() << endl;      // 转置cout << matrix_33.sum() << endl;            // 各元素和cout << matrix_33.trace() << endl;          // 迹cout << 10*matrix_33 << endl;               // 数乘cout << matrix_33.inverse() << endl;        // 逆cout << matrix_33.determinant() << endl;    // 行列式// 特征值// 实对称矩阵可以保证对角化成功Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigen_solver ( matrix_33.transpose()*matrix_33 );cout << "Eigen values = \n" << eigen_solver.eigenvalues() << endl;cout << "Eigen vectors = \n" << eigen_solver.eigenvectors() << endl;// 解方程// 我们求解 matrix_NN * x = v_Nd 这个方程// N的大小在前边的宏里定义,它由随机数生成// 直接求逆自然是最直接的,但是求逆运算量大Eigen::Matrix< double, MATRIX_SIZE, MATRIX_SIZE > matrix_NN;matrix_NN = Eigen::MatrixXd::Random( MATRIX_SIZE, MATRIX_SIZE );Eigen::Matrix< double, MATRIX_SIZE,  1> v_Nd;v_Nd = Eigen::MatrixXd::Random( MATRIX_SIZE,1 );clock_t time_stt = clock(); // 计时// 直接求逆Eigen::Matrix<double,MATRIX_SIZE,1> x = matrix_NN.inverse()*v_Nd;cout <<"time use in normal inverse is " << 1000* (clock() - time_stt)/(double)CLOCKS_PER_SEC << "ms"<< endl;// 通常用矩阵分解来求,例如QR分解,速度会快很多time_stt = clock();x = matrix_NN.colPivHouseholderQr().solve(v_Nd);cout <<"time use in Qr decomposition is " <<1000*  (clock() - time_stt)/(double)CLOCKS_PER_SEC <<"ms" << endl;return 0;
}

即可测试成功

转载于:https://my.oschina.net/VenusV/blog/1476681

版权声明:本站所有资料均为网友推荐收集整理而来,仅供学习和研究交流使用。

原文链接:https://hbdhgg.com/1/544.html

发表评论:

本站为非赢利网站,部分文章来源或改编自互联网及其他公众平台,主要目的在于分享信息,版权归原作者所有,内容仅供读者参考,如有侵权请联系我们删除!

Copyright © 2022 匯編語言學習筆記 Inc. 保留所有权利。

底部版权信息